Fujitsu Laboratories TREC9 Report

Isao Namba

Computer System Laboratory Fujitsu Laboratories Ltd.
{namba}@jp.fujitsu.com

Abstract

This year a Fujitsu Laboratory team participated
in web tracks. For TREC9 we experimented pas-
sage retrieval which is expected to be effective for
Web pages which contain more than one topic. To
split document into passages, we used NLP based
paragrah detecting program, not by fixed (variable)
window size. But it did not produce better re-
sult for TREC9 Web data. For indexing large web
data faster, we developped two techiniques. One is
multi-partional selective sorting for inversion which
is about 10-30% faster than normal quick sorting in
sorting term-number, text-number pair. The other
is compressed trie dictionary based stemming.

1 System Description

Except reranking by passage retrieval, and passage
segementing program for index preprocessing, the
frame work we used, is same as that of TRECS[1].

1.0.1 Teraf}

Teraf}[2] is a fulltext search library, designed to pro-
vide an adequate number of efficient functions for
commercial service, and to provide parameter com-
bination testing and easy extension for experiments
in IR. For TREC9 we added functions for run time
passage retrieval

1.0.2 trec_exec

trec_exec is designed for automatic processing of
TREC. It contains a procedure controller, evalua-
tion module | logging module, and all non-searching
units such as query generation, query expansion and
so on. trec_exec can execute all the TREC process-
ing for one run in a few minutes, and it can be

used for system tuning by hill-climing. But it was
difficult to tune parameter control for TREC9 web
data, because document set and queries for TREC9
is different from past trec data.

2 Common Processing

2.1 Indexing/Query Processing

2.1.1 indexing vocabulary

The indexing vocabulary consists of character
strings made up of letters, numbers, and symbols,
and no stop words were used in indexing. For
TRECS, we modified the grammar of the token rec-
ognizer to accept acronyms with symbols such as
U.S., and AT&T as one token.

2.1.2 Stemmer

As the experiment in TREC8[1] shows, SMART/[3]

stemmer seems to be stable, we used SMART.

2.1.3 Information in inverted file

Text number, term frequency, and term position are
stored for the ad hoc task, and small web track
for run time phrase processing and reranking by bi-
gram extraction.

For experiment of passage retrieval, the delim-
iters of passage were also indexed.

2.1.4 Stop word list for query processing

As in the TRECS8[1], we used a stop word list of
about 400 words of Fox[4], and words with a high
df (more than 1/7 of the number of all documents)
were also treated as stop words.

2.1.5 Stop pattern removal

The expression of TREC queries are artificial, so
frequently appearing patterns such as “relevant doc-
ument “ are stop patterns. We generalized this ob-
servation, and removed the words which meet one
of the following condition.

1. Word in stopword list is a stopword.

2. Word which is not a proper noun’, and whose df
in TREC1-7 queries is more than 400*0.1 is a stop
word.

3. Word bi-gram whose df in TREC1-7 queries is
more than 400%0.02 is a stop pattern.

4. Word tri-gram whose df in TREC1-7 queries is
more than 400%0.01 is a stop pattern.

5. All the words in a sentence that contains “not rel-
evant” are stop words.

6. 4 words following “other than” are stop words.

7. 4 words following “apart from” are stop words.

2.2 Weighting Scheme

The term weight is gt f x ¢ f x idf, and the score for
one document is the sum of the term weights with
co-occurence boosting.

1. gtf

qtf is the combination of the following param-
eters

qtfzszw*tf*ttw

where

f is the topic field (title, description or narra-
tive).

fw is weight of the topic field. We set the value
for the title field to 3.0, the value for the de-
scription field 1.5, the value for the narrative
is 0.9. Some teams [5], [6],[7] used weighting
depending on field type, and we take the same
approach.

tf 1s the bare frequency in each field.

ttw is the term type weight. It is set to 3 for

terms, and set to 1 for phrase(word bi-gram).
2. tf

We simply used the tf part of OKAPI[5].

tf _ (k14 1)xterm_freq
= (1-p brdoc_lengih_in_byie
(ka((1—)+averuge_doc_length_in_byte)

ki =1.5,b=0.75

1U.S appears 94 times in TREC1-7 queries.

3. 1df
We used a modified idf of OKAPI. We intro-

duced a cut off point for low df words, and
decreased the idf value for high df words.
idf = log, N={rxe)
N is the number of documents
n is df if (df > 1/10000 * N) else
n = 1/10000 * N
a 1s set to 3

2.3 Co-occurence Boosting

As in TRECS8, we use co-occurence boosting te-
chinique which favours co-occurence of query terms
in a document. Co-ocurrence boosting is imple-
mented by simply multipling the boost ratio to the
similarity of each term.

Si:ZB*Wt,i
t

S; is the degree of similarity between a
document and topics.

7 1s the document number.

t 1s a term that document; includes.

Wi, is the part of similarity of term; in
document; .
B is the

occurrence.

boost-ratio by term co-

The best parameter B depends on the query, but
it is difficult to tune them for each query. So we
set the B to 1.10 for the title word, to 1.05 for the
description word, and to 1.03 for the narrative word,
and to 1.0 for the word added by query expansion.

2.4 phrase(bi-gram)

Instead of traditional IR phrase (two adjacent non-
stopword pair with order or without order), we per-
mitted limited distance in phrase. The motiva-
tion for introducing fixed distance is that that non-
stopword may exist between two adjacent words in
a query, and it producued slightly better result in
the past experiment.[1] The term weight of bi-gram
is fixed as 1/3 of a single word, and the distance is
set to 4.

2.5 Query Expansion

Query Expansion was used for the ad hoc task, and
small web track. The Boughanem formula[5] was
used to select terms.

TSV = (r/R—as/S).w®

w) is modified and more general version of Robert-
son/Sparck Jones weight.

The a was set 0.001, and k4 was -0.3, kb was
1, and k6 was 64. The top 20 documents in the
pilot search were supposed to be relevant, and the
documents ranked from 500 to 1000 were supposed
to be non-relevant. The top ranked 40 words which
are not included in original query, which are not
included in the stopword list of SMART, whose tsv
score are more than 0.003, whose df are more than
60, and whose df are less than 200000 were added

to the original query.

No collection enrichment technique was used.

2.6 Passage Retrieval

The average text size of TREC8 web data is large
compared with past TREC collections. Its aver-
age text size is about 8KB. If the large web page
contains more than one topic, scoring the page by
its contents (large passage) not whole contents may
produce better result. This requires techniques to
split text by structure of topics. Using NLP te-
chiniques developped for text summarization[8], we
splitted the text into paragrahs, and indexed the
text with topic boundary.

Following is the example of splitted text. The
topic delimiter is <delim > tag, and the attribute
“level” expresses level of paragraph. As the num-
ber of level becomes bigger, the size of paragrah
becomes larger.

<document>

<DOCNO>WTX049-B01-2< /DOCNO>

<BD>

<delim level=7/>

Table of Contents First-Time Startup

Overview of the First-Time Startup Process Default
Values Using the Setup Command Facility

Help Text Using the Setup Command Facility Power-
ing Up Your System Verifying Installed Software and
Hardware

Configuring Global and Interface Parameters Storing
the Configuration in Nonvolatile Memory

Sample Configuration

<delim level=1/>

This chapter includes sample worksheets filled in to
show you how this information is used when the setup
command facility runs through the System Config-
uration Dialog.

Note Some configuration parameters discussed in this
document (and shown on the configuration work-
sheets) apply

only to routers that have the protocol translation op-
tion. If your router does not have protocol transla-
tion,

the interactive setup command facility does not
prompt you for these parameters.

<delim level=1/>

Overview of the First-Time Startup Process

The first time you start up the system, the setup
command facility operates automatically. An inter-
active

dialog called the System Configuration Dialog ap-
pears on the system console screen. The dialog nav-
igates you

through the configuration process by prompting you
for the information you have recorded on the config-
uration

worksheets. The setup command facility also pro-
vides default values and help text for the configura-
tion parameters,

as described later in this section.

The setup command facility detects which interfaces
are installed and prompts you for configuration in-
formation

for each installed interface. When you finish con-
figuring one interface, the setup command software
prompts you

for the next interface and continues until they are all
configured.

At first-time startup, you must do the following:
Power up your router and if necessary, test for prob-
lems with system memory and CPU.

Verify software version and installed hardware and
software options.

Configure global parameters.

Configure interface parameters.

<delim level=2/>

Copyright 1988-1995
Cisco Systems Inc.
</BD>

< /document>

We simply apply Okapi scoring (variation we
used) to the passage, and merged fulltext scoring,
and passage scoring. In the training by TRECS
web data, we set passage boundary level to 3, in
that case average passage size was about 250 words.
Merging his technique prodocues slightly better (1

point in average precision) result for TREC8 web
track data, but did not result in improvment in
TRECY web track data whose average text size is
about 4KB

3 Small Web Track
Runs

official

Four runs are submitted, Flab9atN, Flab9atdN,
Flab9atd2N, and Flab9atdnN. In the Run id, the in-
fix ’a > means automatic, ’t’ means using title field,
’d’ means using description field, and 'n’ means us-
ing narrative field.

[Name [Flab9t[Flab9tdN|Flab9td2N|Flab9tdnN|
field T TD TD TDN

link NO |NO NO NO
Average Prec |.136 |.181 187 192
R-Prec 153 |.207 .208 223

P@20 157|232 .226 252
Retrieved 50000 |50000 50000 50000
Rel-ret 2617 2617 2617 2617
Relevant 1179 |1526 1490 1567

best/ >= med|2/25 [0/31 0/31 0/35

Table 1: Official web track result

4 Speed up of indexing

Generally sorting based inversion takes these 4
steps.

1. STEP1 Apply stemmer to input text.

2. STEP2 Convert stemmed word to term-id. In
most cases term-id to stemmed word is as-
signed by sequential order. Using hash may
be fastest.

3. STEP3 Put [term-id,text-number,(offset)]
pair(tuple) to work area

4. STEP4 If work area is full, then sort the area by
ascending order of term-id text-number offset.

In sorting based inversion, stemming(+hashing)
and sorting takes 70% of whole processing speed[1].
So speed up of above process leads to speed of whole
processing.

4.1 Multi-paritional selective sorting

The fastest sorting algorithm is generally quick sort
algorithm. But in sorting the pair of inverted file
entry, we can expect the distribution of primary
key(term_id). Because the word with high docu-
ment frequency gets the smaller number, and the
word with low document frequency gets the bigger
number, they distribute in a log regression manner.
Using this statistics, we can partion the sorting area
into multi blocks at one time instead of partioning
the sorting area in binary block (quick sort). Multi
block partioning soring is faster than binary par-
tioning sorting if partitioning is successful. 2

The other techniques we introduced is using radic
sort. The order of radic sort is O(n), so it is ex-
pected to be faster than quick sort On(loga(n)).
But in practice, it is slower than quick sort for large
data. It is because radic sort requires two buffers,
and once copying between two buffers requires real
memory access, it serverly slow down. But if sort
target is small enough 3, it is surely faster than
quick sort.

Using quick sort for large block, and radic sort
for small block, we can improve the sorting speed
of overall for inverted file entry.

The multi-paritional selective sorting algorithm
is as follows.

1. Input is [term_id text_number]
2. Prepare n+ 1 blocks. n is logz(mazterm_id)

3. Parition entry into n+ 1 blocks. The partition-
ing function is to put entry to logs(term_id)th
block.

4. Foreach blocks, apply sorting.

(a) If partion is larger than 3/4 of L2 cache,
use quick sort.

(b) If partion is small than 3/4 of L2 cache,
use radic sort.

The performace of this approach is depending on
the partioning. In the experiment for VLC100, it is
10% faster than normal quick sorting, for WT10g,
it is 30% faster than normal quick sorting. *

?multi partioning itself requires more complicated deci-
sion function than binary blocking sorting. So if partioning
results in unbalanced blocks, it is slower than quick sort.

3it depends on the L2 cache of Hardware

4The speed depends on the max text_number in sorting
target, and target area size etc.

4.2 Speed up of stemmer

As the stemming program matches rules step by
step, 1t is slower than simple token recognizer. For
example just recognizing token can process 16.5GB
documents per hour, but with SMART stemmer it
slows down 6.4GB documents per hour. Making
compressed trie dictionary of frequently appearing
70000 words in text, and skip running stemming
algorithm for them, the speed of stemmer increases

about 13%.

5 Large Web Track

Our main concern this year is still how much re-
sources are required to processing large data.
We concentrated on speed up of indexings.

5.1 Hardware environment

One PC was used for the large web track. It has
120GB disk, 640MB main memory and two Intel
Celeron 466MHz CPUs. Its cost is about 180000
Japanse yen (about 1700 US$) at Nov 1999.

Using PC for information retrieval has practical
advantages.

One is that PC(Intel i86) is cheaper than work-
station. This is well known. The other is that the
speed of information retrieval process is depending
on the performance of integer calculation.® The
PC(i86)’s processing speed of floating point calcu-
lation is slower than that of workstation, even its
clock is 3 times faster than workstation, but this
disadvantage is not critical in IR application.

5.2 language type checking

To reduce index size, and increase the speed of
searching, statistical based language type checker
is used as in TRECS][1]. Its effect is that the sum of
word entry in inverted file is reduced to 10 million
from 20 million, and the index size is reduced to
4.0GB from 4.8GB without stopword condition.

5.3 Large web track result

Our main concern is balancing processing speed and
hardware cost. The submitted 3 runs are the same

5Ranking requires floating point calculation, but the most
of CPU time is used for logical operation and decoding of
inverted file entry.

condition as that of TRECS. All runs did not use
phrases, and query expansion. B+R means rank-
ing document with AND condition of every non-
stopword in a query. If the number of retrieved
documents is less than 20, then ranking search is
retried. This AND conditional interface is popu-
lar in actual Internet services. R means traditional
accumulator method. Flab9bsN used index with
stopwords. Table2 shows our official result.

|Run—id | Pas | P@1o0 | Calc | speed (sec) |
Flab9bN (0.44 |0.46 |B+R|0.31
Flab9rN 0.44 (045 |R 0.72
FLab9bsN [0.45 [0.45 |B+R|0.47

Table 2: Large web official result

There is no remarkable difference in precision.
B4R search and index with stopwords seems to be
the best choice considering speed.

5.4 Performance of pre-processing

Compared with TRECS8, we improved preprocessing
speed. The preprocessing involves web detagging,
running language type checking, and indexing. The
official pre-processing data is as follows.

1. The detagging script for TREC8([1] is rewritten
in C, and its processing time is improved to 10
hours including the time for gunzip the data.

2. language type checker takes 4 hours using 2
CPU.

3. Indexing

Instead of Solaris2.6, we used Linux to avoid
work memory swapping out problem. [1] The
indexing time is 10 hours and 6 minutes with
stopword condition.

| condition | time status | work area |
With stopword 10.13 hours | official | 300MB
Without stopword | 12.15 hours | official | 300MB

Table 3: Inversion time

The Index size is given in table 4.

| files | with stopword | without stopword |
inverted file 3.01 4.03
dictionary 0.46 0.59
text size array | 0.07 0.07
text number id | 0.41 0.41
| total | 3.95GB | 5.10GB |

Table 4: Index size

5.5 Performance of query processing
5.5.1 Average Processing Speed

The regulation of a large web track says that query
processing speed is the total processing time di-
vided by the number of query, As the experiment
TRECS[1] shows, using two processs in 2 CPU en-
vironments is fastest. In TREC9 we used thread
based approach. ® The query processing speed is
given in official result.

6 Conclusion

For small web track, we tried applying passage
based scoring, but we did not get improvment. For
large web track, we used two techniques, both of
which are effective for speed up indexing.

References

[1] I Namba and N Igata. Fujitsu laboratories trec8
report. The Eighth Text REtrieval Conference,
2000.

I Namba, N Igata, H Horai, K Nitta, and K Mat-
sui. Fujitsu laboratories trec7 report. The Sev-
enth Text REtrieval Conference, 1999.

SMART ftp
ftp://ftp.cs.cornell.edu/pub/smart/. 1999.

cite.

Chiristopher Fox. Chapter 7, lexical analysis
and stoplists. Information Retrieval Data Struc-
ture and Algorithms ed. William B. Frakes, Ri-
cardo Baeza-Yates Prentice Hall, 1992.

6Using multi-threading techniques, we tried more com-
plicated processing in experiment, but we don’t report the
experiment in this paper.

[6] S E Robertson, S Walker, and M Beaulieu.
Okapi at trec-7. The Seventh Text RFEtrieval
Conference, 1999.

D R H Miller, T Leek, and R M Schwarts. Bbn
at trec-7. The Seventh Text REtrieval Confer-
ence, 1999.

James Allan, Jamie Callan, Mark Sanderson,
Jinxi Xu, and Steven Wegmann. Inquery and
trec-7. The Seventh Text REtrieval Conference,
1999.

[8] Yoshio Nakao. Summary zation by structure of
topics(in japanese). IPSJ Natural Lanuage Pro-
cessing Group 132th meeting, 1999.

